首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   15篇
  国内免费   1篇
地球科学   259篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   10篇
  2017年   7篇
  2016年   9篇
  2015年   5篇
  2014年   7篇
  2013年   17篇
  2012年   10篇
  2011年   12篇
  2010年   8篇
  2009年   12篇
  2008年   18篇
  2007年   7篇
  2006年   11篇
  2005年   4篇
  2004年   9篇
  2003年   13篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
31.
In a companion Part I of this paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.735 ), a coupled hydro‐mechanical (HM) formulation for geomaterials with discontinuities based on the finite element method (FEM) with double‐node, zero‐thickness interface elements was developed and presented. This Part II paper includes the numerical solution of basic practical problems using both the staggered and the fully coupled approaches. A first group of simulations, based on the classical consolidation problem with an added vertical discontinuity, is used to compare both the approaches in terms of accuracy and convergence. The monolithic or fully coupled scheme is also used in an application example studying the influence of a horizontal joint in the performance of a reservoir subject to fluid extraction. Results include a comparison with other numerical solutions from the literature and a sensitivity analysis of the mechanical parameters of the discontinuity. Some simulations are also run using both a full non‐symmetric and a simplified symmetric Jacobian matrix. On top of verifying the model developed and its capability to reflect the conductivity changes of the interface with aperture changes, the results presented also lead to interesting observations of the numerical performance of the methods implemented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
32.
Sedimentation in the 9500 km2, 4100 m deep Hispaniòla—Caicos Basin is dominated by turbidity currents. Carbonate turbidites originate from the Bahama Islands, Great Inagua and Caicos at the north end of the basin. Mixed carbonate—non-carbonate flows come from Hispaniola and perhaps Cuba. Most flows originate on insular slopes rather than in shallow water. The relatively low CaCO3 content of hemipelagic sequences throughout the entire basin reveals that the influence of non-carbonate Hispaniola—Cuba sources is widespread.The basin was sampled with closely spaced piston cores. Sand-layer isopach and frequency maps reveal four or five major basin entry points for turbidity currents. Flow size is proportional to the size of source areas. Average volumes of flows originating from Hispaniola—Cuba, the largest source, are 109 m3. This compares to an average flow volume of 106 m3 for flows derived from the smallest source area, the Southeastern Caicos Bank. Measures of turbidity-current activity, such as thickness and frequency, change in a regular fashion away from each entry point. Average lutite thickness (combining hemipelagic and turbiditic lutite) are greatest near the basin entry points. On the abyssal plain occupying the south half of the basin, Bouma turbidite sedimentary structure sequences tend to be complete. However, on the Caicos Fan, the sedimentary structure sequences in turbidites are characterized by missing or repeated units. Six radiocarbon dates of two widespread presumed pelagic units in the basin yielded younger dates in stratigraphically older positions. The reversed dates are assumed to reflect storm erosion of older sediment on adjacent insular shelves.Consideration of a north—south reflection seismic profile over the basin indicates that the present sediment regimen has pertained through much of the Neogene. The coherence, convergence and termination of reflections in the seismic section are consistent with and tend to confirm conclusions based on the core study regarding the greater extent and volume of sediment deposits derived from the Hispaniola source area.  相似文献   
33.
Brinck EL  Frost CD 《Ground water》2007,45(5):554-568
Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study water withdrawn during CBNG production for isotope tracing in the hyporheic zone because it poses a variety of economic, environmental, and policy issues in the Rocky Mountain states. Ground water quality must be protected as CBNG water is added to semiarid ecosystems. Strontium (Sr) isotopes are effective fingerprints of the aquifer from which water originates. In this study, CBNG water was found to have a higher (87)Sr/(86)Sr ratio than the local alluvial aquifer water. This measurable difference allows the strontium isotope ratio and concentration to be used as tracers of CBNG water following its discharge to the surface. The dissolution and mobilization of salts from soil are an important contributor to ground water quality degradation. In the Powder River basin of Wyoming, the soils are calcium carbonate-buffered systems. The chemical similarity of strontium to calcium allows it to substitute into calcium minerals and enabled us to use strontium isotopes to identify calcium salts mobilized from the soil. Strontium isotopes are an effective monitor of the source of ions and the volume and direction of introduced water flow in the hyporheic zone.  相似文献   
34.
Extracellular enzymatic hydrolysis of high-molecular weight organic matter is the initial step in sedimentary organic carbon degradation and is often regarded as the rate-limiting step. Temperature effects on enzyme activities may therefore exert an indirect control on carbon mineralization. We explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps in anoxic organic carbon degradation in long-term incubations of sediments from the Arctic and the North Sea. These sediments were incubated under anaerobic conditions for 24 months at temperatures of 0, 10, and 20 °C. The short-term temperature response of the active microbial community was tested in temperature gradient block incubations. The temperature optimum of extracellular enzymatic hydrolysis, as measured with a polysaccharide (chondroitin sulfate), differed between Arctic and temperate habitats by about 8-13 °C in fresh sediments and in sediments incubated for 24 months. In both Arctic and temperate sediments, the temperature response of chondroitin sulfate hydrolysis was initially similar to that of sulfate reduction. After 24 months, however, hydrolysis outpaced sulfate reduction rates, as demonstrated by increased concentrations of dissolved organic carbon (DOC) and total dissolved carbohydrates. This effect was stronger at higher incubation temperatures, particularly in the Arctic sediments. In all experiments, concentrations of volatile fatty acids (VFA) were low, indicating tight coupling between VFA production and consumption. Together, these data indicate that long-term incubation at elevated temperatures led to increased decoupling of hydrolytic DOC production relative to fermentation. Temperature increases in marine sedimentary environments may thus significantly affect the downstream carbon mineralization and lead to the increased formation of refractory DOC.  相似文献   
35.
Deliberately or indirectly, most of the terrestrial surface has been affected by the actions of human beings. For that reason, geomorphologists have needed to broaden their scope of inquiry to encompass the human-landscape system. Four themes related to human actions emerge in recent research in geomorphology: (1) human impacts on geomorphic systems, (2) human-landscape feedbacks, (3) geomorphic hazards and (4) stratigraphic markers of anthropogenic origin. The importance of humans as geomorphic agents challenges geomorphologists and their collaborators to move beyond unidirectional cause-and-effect (human impacts), and develop new research frameworks that better integrate the ongoing interactions between people and landscapes.  相似文献   
36.
37.
Bio-electricity is an important technology for Energy Modeling Forum (EMF-27) mitigation scenarios, especially with the possibility of negative carbon dioxide emissions when combined with carbon dioxide capture and storage (CCS). With a strong economic foundation, and broad coverage of economic activity, computable general equilibrium models have proven useful for analysis of alternative climate change policies. However, embedding energy technologies in a general equilibrium model is a challenge, especially for a negative emissions technology with joint products of electricity and carbon dioxide storage. We provide a careful implementation of bio-electricity with CCS in a general equilibrium context, and apply it to selected EMF-27 mitigation scenarios through 2100. Representing bio-electricity and its land requirements requires consideration of competing land uses, including crops, pasture, and forests. Land requirements for bio-electricity start at 200 kilohectares per terawatt-hour declining to approximately 70 kilohectares per terwatt-hour by year 2100 in scenarios with high bioenergy potential.  相似文献   
38.
Abstract

The Samborombón Bay area (Argentina) is a coastal plain environment that contains groundwater resources with high salinity. In addition, there are local freshwater lenses associated with shell ridges and sand sheets in the region. In this work, the groundwater travel time in these freshwater lenses is estimated based on their geological conditions, which include hydraulic conductivity, recharge, morphology and discharge to surface freshwater or to saline groundwater. Groundwater travel times in the freshwater lenses were calculated from the equations developed by Chesnaux and Allen. The travel times estimated for the different scenarios were relatively short. The results indicate that the groundwater flow tends to be strongly dependent on the recharge conditions, with an excess of water in the water balance. The results can be applied to help design sustainable management methods to exploit this water resource system and also to assess the impact of contaminant plumes on this groundwater resource.

Citation Carol, E., Kruse, E. & Roig, A. (2010) Groundwater travel time in the freshwater lenses of Samborombón Bay, Argentina. Hydrol. Sci. J. 55(5), 754–762.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号